Variants in the cholesterol ester transfer protein and lipoprotein lipase genes are predictors of plasma cholesterol response to dietary change.

نویسندگان

  • A J Wallace
  • J I Mann
  • W H Sutherland
  • S Williams
  • A Chisholm
  • C M Skeaff
  • V Gudnason
  • P J Talmud
  • S E Humphries
چکیده

There are no definitive explanations as to why individuals with hypercholesterolemia, a major cardiovascular risk factor, respond differently to dietary change. Fifty five free-living individuals completed a double crossover trial with two dietary regimens, a high saturated fat diet (providing 21% energy from saturated fat and 3% energy from polyunsaturated fat) and a high polyunsaturated fat diet (providing 11% energy as saturated fat and 10% energy as polyunsaturated fat), each phase continuing for 4 weeks. Extensive genotyping and several measures of dietary compliance have provided further insights regarding the determinants of extent of cholesterol response to changes in the nature of dietary fat. Individuals with the CETP B1B1 genotype and the LPL X447+ allele showed an average 0. 44 (95% CI: 0.22, 0.66) and 0.45 (95% CI: 0.18, 0.72) mmol/l greater change in total cholesterol, respectively, than those with one or more CETP B2 allele or homozygous for the LPL S447 allele when comparing diets high and low in saturated fat. Indices of dietary compliance including changes in reported saturated and polyunsaturated fat intake and change in triglyceride linoleate were not significantly different between the CETP genotypes. Change in reported saturated (r=0.36, P=0.04) and polyunsaturated (r=0.22, P=0. 05) fat intake and change in triglyceride linoleate (reflecting polyunsaturated fat intake) (r=0.21, P=0.07), also predicted total cholesterol response to dietary fat changes. In multivariate analyses, variation in the cholesterol ester transfer protein and lipoprotein lipase genes predicted response independent of measures of dietary compliance, suggesting that these two genes are important determinants of variation in cholesterol response to dietary change in free-living individuals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر پلی‌مرفیسم I405V ژن CETP بر پاسخ لیپیدی به تغییر ترکیب اسیدهای چرب رژیم غذایی

Background and objectives: Atherosclerosis results from a complex interaction between genetic and environmental factors. Free cholesterol efflux from peripheral tissues and transferring to the liver for excretion from bile which is known as reverse cholesterol transfer (RCT) plays a central role in protection against atherosclerosis. HDL and cholesteryl ester transfer protein (CETP) are the maj...

متن کامل

Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise.

To compare postexercise changes in plasma lipids and lipoprotein enzymes in 13 hypercholesterolemic (HC) and 12 normocholesterolemic men [total cholesterol (TC) 252 +/- 5 vs. 179 +/- 5 mg/dl], fasting blood samples were obtained 24 h before, immediately, 24, and 48 h after a single bout of treadmill walking (70% peak O(2) consumption, 500 kcal expenditure). Significant findings (P < 0.05 for al...

متن کامل

Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population.

We studied the association between common haplotypes in six relevant lipid metabolism genes with plasma lipid levels. We selected single-nucleotide polymorphisms (SNPs) in the cholesterol ester transfer protein (CETP), lipoprotein lipase (LPL), hepatic triglyceride lipase (HL), low-density lipoprotein cholesterol receptor (LDLR), apolipoprotein E (ApoE) and lecithin-cholesterol acyltransferase ...

متن کامل

Mammalian adipose tissue and muscle are major sources of lipid transfer protein mRNA.

The plasma cholesteryl ester transfer protein (CETP) catalyzes the transfer of cholesteryl esters from high density lipoproteins (HDL) to triglyceride-rich lipoproteins and plays a major role in the catabolism of HDL. Lipoprotein lipase (LPL) is the rate-limiting enzyme for hydrolysis of circulating triglyceride and is involved in HDL formation. We show that tissues containing LPL are major sou...

متن کامل

Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men.

Lecithin:cholesteryl acyl transferase (LCAT), cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), and lipoprotein lipases are involved in high density lipoprotein (HDL) metabolism. We evaluated the influence of insulin sensitivity and of the TaqIB CETP gene polymorphism (B1B2) on plasma LCAT, CETP, and PLTP activities (measured with exogenous substrates) and their r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Atherosclerosis

دوره 152 2  شماره 

صفحات  -

تاریخ انتشار 2000